## The Rarita-Schwinger paradoxes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 206581
(http://iopscience.iop.org/0305-4470/20/18/053)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:19

Please note that terms and conditions apply.

# The Rarita-Schwinger paradoxes 

M Kobayashi† and Y Takahashi $\ddagger$<br>$\ddagger$ Physics Department, Gifu University, Yanagido, Gifu 501-11, Japan<br>$\ddagger$ Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada

Received 16 December 1986, in final form 30 June 1987


#### Abstract

The Rarita-Schwinger field coupled to an external electromagnetic field is reduced to a constrained mechanical model. It is shown that, guided by the mechanical model with the linear supplementary condition, both the non-positive definiteness of the anticommutators and the non-causal modes of propagation (the Rarita-Schwinger paradoxes) have the same origin.


## 1. Introduction

High-spin field theories are beset with difficulties of various kinds. In 1961 Johnson and Sudarshan [1] first observed the non-positive definiteness of the anticommutators for the Rarita-Schwinger field coupled to an external electromagnetic field. This anomaly was re-emphasised by Velo and Zwanziger [2] in 1969 who discovered non-causal modes of propagation in the classical theory. Many analyses have been made of these problems [3-5]. We now have recognised that these diseases are viewed as rather general phenomena inherent in constrained systems and commonly originate from the invertibility condition [6].

The Rarita-Schwinger field coupled to an external electromagnetic field is reduced to a mechanical model with the supplementary condition. By using the constrained mechanical model we trace the origin of the Rarita-Schwinger paradoxes, namely the non-positive definiteness of the anticommutators and the non-causal modes of propagation. The aim of this paper is to show that the Rarita-Schwinger paradoxes have a common origin inherent in the constrained dynamical system.

In $\S 2$ we present the mechanical model with the supplementary condition and analyse the situation corresponding to the occurrence of secondary constraints. In § 3 we show that the Rarita-Schwinger field coupled to an external electromagnetic field is reduced to the constrained mechanical model of $\$ 2$ and that the inconsistencies (the Rarita-Schwinger paradoxes) come from the same source, as is expected. One of the spin- $\frac{1}{2}$ components plays the role of a Lagrange multiplier. This corresponds to having a primary constraint arising from the Lagrangian. The final section is devoted to the conclusion. In the appendix the characteristic determinant is obtained from the viewpoint of keeping the manifest covariance in mind.

## 2. The mechanical model

Consider a system with $N+1$ degrees of freedom described by the Lagrangian

$$
\begin{equation*}
L=\mathrm{i} \phi_{\mu} m_{\mu \nu} \dot{\phi}_{v}-\phi_{\mu}^{*} a_{\mu \nu} \phi_{\nu}-\lambda^{+} c_{v}, \phi_{\nu}-\phi_{\mu}^{*} c_{\mu}^{*} \lambda-V\left(\phi_{\mu}^{*}, \phi_{\nu}\right) . \tag{2.1}
\end{equation*}
$$

We assume summation over repeated indices. Here $\phi_{\mu}^{*}, \phi_{n},(\mu, \nu=0,1,2, \ldots, N)$ are the coordinates and the potential term $V$ contains quadratic as well as higher-order terms in the coordinates ${ }^{\dagger}$. By introducing the Lagrange multipliers $\lambda^{*}, \lambda$, we have imposed the linear supplementary condition

$$
\begin{equation*}
c_{\mu} \phi_{\mu}=0 \quad\left(\phi_{\mu}^{+} c_{\mu}^{\dagger}=0\right) \tag{2.2}
\end{equation*}
$$

where the coefficients $c_{\mu}$ do not contain the coordinates.
The 'kinetic mass matrix' $m_{\mu \nu}$ and the matrix $a_{\mu \nu}$ are both Hermitian.
Since the matrix $m$ is Hermitian, it can always be diagonalised by a unitary transformation. We assume that this has been done and that

$$
\begin{equation*}
m_{\mu \nu}=m_{\mu} \delta_{\mu \nu} \tag{2.3}
\end{equation*}
$$

with no summation over the repeated index of the eigenvalue $m_{\mu}$ from now on. This eigenvalue is called the kinetic mass [7].

The kinetic masses are assumed to be non-vanishing but not necessarily all positive. This 'wrong' sign in the kinetic part may create the inconsistencies.

The potential term plays no role in the constraint structure and is therefore dropped from now on. Dropping the potential term $V$, the Lagrangian can be written

$$
\begin{equation*}
L=\mathrm{i} m_{\mu} \phi_{\mu}^{\dagger} \delta_{\mu \nu} \dot{\phi}_{\nu}-\phi_{\mu}^{+} a_{\mu \nu} \phi_{\nu}-\lambda^{\dagger} c_{\nu} \phi_{\nu}-\phi_{\mu}^{*} c_{\mu}^{+} \lambda \tag{2.4}
\end{equation*}
$$

We now assume that the mass matrix is non-singular in order to analyse in detail the problem inherent in the constrained system. The problem is to show that both the non-positive definiteness of the anticommutators and the non-causal modes of propagation commonly originate from the lack of invertibility of the operator $\left(d c^{+}\right)$defined by equation (2.8) below.

The Euler-Lagrange equations corresponding to the Lagrangian (2.4) are

$$
\begin{equation*}
\mathrm{i} m_{\mu} \delta_{\mu \nu} \dot{\phi}_{\nu}-a_{\mu \nu} \phi_{\nu}-c_{\mu}^{*} \lambda=0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{\nu} \phi_{\nu}=0 \tag{2.6}
\end{equation*}
$$

where equation (2.6) implies the supplementary condition.
Taking the time derivative of equation (2.6), we obtain

$$
\begin{equation*}
\left(d c^{*}\right) \lambda+\left(\mathbf{i} \dot{c}_{\mu} \delta_{\mu \nu}+d_{\mu} a_{\mu \nu}\right) \phi_{\nu}=0 \tag{2.7}
\end{equation*}
$$

Here we have substituted (2.5) into (2.7) and we have defined ( $d c^{*}$ ) as

$$
\begin{equation*}
\left(d c^{*}\right)=d_{\mu} c_{\mu}^{*} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{\mu}=m_{\mu}^{-1} c_{\mu} \tag{2.9}
\end{equation*}
$$

Assuming the invertibility condition, which is

$$
\begin{equation*}
\left(d c^{\prime}\right) \neq 0 \tag{2.10}
\end{equation*}
$$

[^0]we obtain from (2.5) and (2.7) the true equations of motion:
\[

$$
\begin{equation*}
\mathrm{im}_{\mu} \dot{\phi}_{\mu}+\mathrm{ic}_{\mu}^{\dagger}\left(d c^{*}\right)^{-1} \dot{c}_{v} \phi_{v}-M_{\mu \nu} a_{v, \lambda} \phi_{\lambda}=0 \tag{2.11}
\end{equation*}
$$

\]

Here we have introduced the operator $M_{\mu \nu}$ defined by

$$
\begin{equation*}
M_{\mu \nu}=\delta_{\mu \nu}-c_{\mu}^{+}\left(d c^{+}\right)^{-1} d_{\nu} \tag{2.12}
\end{equation*}
$$

This operator satisfies the following relationships:

$$
\begin{align*}
& M_{\mu \lambda} M_{\lambda \nu}=M_{\mu \nu}  \tag{2.13}\\
& d_{\mu} M_{\mu \nu}=M_{\mu \nu} c_{\nu}^{\dagger}=0 . \tag{2.14}
\end{align*}
$$

Another true equation of motion comes from (2.7) by again taking the time derivative and the result turns out to be

$$
\begin{gather*}
\left(d c^{*}\right) \dot{\lambda}+\left[2\left(\dot{d} c^{+}\right)+\left(d \dot{c}^{+}\right)-\mathrm{i}\left(d a d^{*}\right)\right] \lambda+\left[\left(\mathrm{i} \ddot{c}_{\mu} \delta_{\mu \nu}+\dot{d}_{\mu} a_{\mu \nu}+d_{\mu} \dot{a}_{\mu \nu}\right) \delta_{v, \lambda}\right. \\
\left.-\mathrm{i}\left(\mathrm{i} \dot{c}_{\mu} \delta_{\mu \nu}+d_{\mu} a_{\mu \nu}\right)\left(1 / m_{\nu}\right) a_{\nu \lambda}\right] \phi_{\lambda}=0 \tag{2.15}
\end{gather*}
$$

where

$$
\begin{equation*}
\left(d a d^{+}\right)=d_{\mu} a_{\mu \nu} d_{\nu}^{\dagger} . \tag{2.16}
\end{equation*}
$$

Here we have substituted (2.5) into (2.15) in the course of the derivation.
Thus we have obtained the true equations of motion for the coordinates $\phi_{\mu}$ and the Lagrange multiplier $\lambda$ [see equations (2.11) and (2.15)).

### 2.1. Propagation

The principal parts of the true equations of motion (2.11) and (2.15) become

$$
\begin{align*}
& \mathrm{i} m_{\mu} \delta_{\mu \nu} \dot{\phi}_{\nu}+\ldots=0  \tag{2.17}\\
& \left(d c^{+}\right) \dot{\lambda}+\ldots=0 \tag{2.18}
\end{align*}
$$

To find the normals $n_{\mu}$ to the characteristic surfaces we replace

$$
\begin{equation*}
\partial_{\mu} \rightarrow n_{\mu} \tag{2.19}
\end{equation*}
$$

in the principal parts of the true equations of motion in covariant form. In the specific frame

$$
\begin{equation*}
n_{\mu}=\left(n_{0}, 0,0,0\right) \tag{2.20}
\end{equation*}
$$

the principal parts of the true equations of motion agree, up to a factor, with equations (2.17) and (2.18) after replacement of $\partial_{0}$ by $n_{0}$. Thus, the characteristic determinant in this frame turns out to be

$$
\begin{equation*}
\mathscr{G}\left(n_{0}\right) \propto\left(n_{0}\right)^{N+1}\left(d c^{*}\right) \prod_{\mu=1}^{N} m_{\mu} . \tag{2.21}
\end{equation*}
$$

### 2.2 Quantisation

If we assume that

$$
\begin{equation*}
c_{0} \neq 0 \tag{2.2.2}
\end{equation*}
$$

equation (2.6) yields

$$
\begin{equation*}
\phi_{0}=-c_{0}^{-1} c_{k} \phi_{k} \quad\left(\phi_{0}=-\phi_{i} c_{1} c_{0}^{-1}\right) \tag{2.23}
\end{equation*}
$$

where Latin indices from the middle of the alphabet, namely $i, j, k, \ldots$, run from 1 to $N$. Furthermore, we have

$$
\begin{equation*}
\dot{\phi}_{0}=-c_{0}^{-1} c_{k} \dot{\phi}_{k}-c_{0}^{-1} \dot{c}_{\nu} \phi_{\nu} \tag{2.24}
\end{equation*}
$$

To obtain the kinetic energy part of the Lagrangian (2.4) we substitute (2.23) and (2.24) back into it. The result turns out to be

$$
\begin{equation*}
L=\mathbf{i} \phi_{i}^{\dagger} \cdot \mathcal{M}_{1 j} \dot{\phi}_{j}+\ldots \tag{2.25}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathscr{M}_{i j}=\left[\delta_{i j}+c_{i}^{*}\left(d_{0} c_{0}^{*}\right)^{-1} d_{j}\right] m_{j} \tag{2.26}
\end{equation*}
$$

The quantity $\mathcal{M}_{i j}$ is called the 'effective mass' [7].
Let $\pi_{j}^{+}$be the canonical momenta conjugate to the coordinates $\phi_{i}$ :

$$
\begin{equation*}
\pi_{j}^{\dagger} \equiv \partial L / \partial \dot{\phi}_{j}=\mathrm{i} \phi_{i}^{\dagger} \mathcal{M}_{i j} . \tag{2.27}
\end{equation*}
$$

Assuming the usual equal time anticommutators

$$
\begin{equation*}
\left\{\phi_{i}(x), \pi_{k}(y)\right\}=\mathrm{i} \delta_{i k} \delta^{(3)}(x-y) \tag{2.28}
\end{equation*}
$$

we arrive at

$$
\begin{equation*}
\left\{\phi_{\mu}(x), \phi_{\nu}^{+}(y)\right\}=\delta^{(3)}(x-y) m_{\mu}^{-1} M_{\mu \nu} . \tag{2.29}
\end{equation*}
$$

Here use has been made of the relationship

$$
\begin{equation*}
\mathcal{M}_{i j}\left(1 / m_{j}\right) M_{j k}=M_{i j} \mathcal{M}_{j k}\left(1 / m_{k}\right)=\delta_{i k} \tag{2.30}
\end{equation*}
$$

as well as (2.23).
We have applied the Hamiltonian formalism proposed by one of the authors [7]. The results we obtained for the system are equivalent to those of Dirac, who studied constrained Hamiltonian systems in general [8]. We underline the simplicity, generality and transparency of the above derivation.

The invertibility condition (2.10), namely

$$
\begin{equation*}
\left(d c^{\dagger}\right) \neq 0 \tag{2.31}
\end{equation*}
$$

is responsible for both the propagation and quantisation of the coordinates $\phi_{\mu}$. Thus, we have arrived at the conclusion that the anomalies have a common origin inherent in the constrained systems.

## 3. The Rarita-Schwinger field

The Lagrange density for the Rarita-Schwinger field coupled to an external electromagnetic field can be cast into the form (2.4).

Let us start with the Lagrange density

$$
\begin{equation*}
\mathscr{L}=\bar{\psi}_{\mu} \Lambda^{\mu: \omega}(D) \psi_{\mu}=\varepsilon^{\mu \rho \sigma \lambda} \bar{\psi}_{\mu} \gamma_{s} \gamma_{s} D_{\lambda} \psi_{\rho}+\mathrm{i} m \bar{\psi}_{\mu} \sigma^{\mu \mu} \psi_{\mu} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda^{\mu: \rho}(D)=-[\mathrm{i}(\gamma \cdot D)-m] g^{\mu \mu}+\mathrm{i}\left(\gamma^{\mu} D^{\mu}+D^{\mu} \gamma^{\rho}\right)-\gamma^{\mu}[\mathrm{i}(\gamma \cdot D)+m] \gamma^{\prime} \tag{3.2}
\end{equation*}
$$

Here $\psi_{\mu}$ is the vector-spinor field describing spin- $\frac{3}{2}$ particles with mass $m$ and $\bar{\psi}_{\mu}$ is the Dirac conjugate to $\psi_{\mu}, \bar{\psi}_{\mu}=\psi_{\mu}^{+} \gamma_{0}{ }^{\dagger}$. Our metric is $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$. We have used the convention $\varepsilon_{0123}=1$.

To introduce coupling to an external electromagnetic field, we have made the replacement

$$
\begin{equation*}
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}-\mathrm{i} e A_{\mu} . \tag{3.3}
\end{equation*}
$$

This choice yields

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right]=-\mathrm{i} e F_{\mu \nu}=-\mathrm{i} e\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) . \tag{3.4}
\end{equation*}
$$

Next we split the Rarita-Schwinger field $\psi_{\mu}$ into irreducible spin parts according to

$$
\begin{align*}
& \phi_{i} \equiv-P_{i: k}^{(3 / 2)} \psi_{k}  \tag{3.5}\\
& \phi_{0} \equiv-\gamma_{i} P_{t: k}^{(1 / 2)} \psi_{k}  \tag{3.6}\\
& \lambda \equiv \psi_{0} \tag{3.7}
\end{align*}
$$

where $P_{i: k}^{(a)}\left(a=\frac{3}{2}, \frac{1}{2}\right)$ is the spin projection operator that projects out the spin- $a$ part from the vector-spinor field and is given by

$$
\begin{array}{ll}
P_{i: k}^{(3 / 2)} \equiv-P_{i k}=g_{i k}-\frac{1}{3} \gamma_{i} \gamma_{k} & \text { for } a=\frac{3}{2} \\
P_{i: k}^{(1: 2)}=\frac{1}{3} \gamma_{i} \gamma_{k} & \text { for } a=\frac{1}{2} \tag{3.9}
\end{array}
$$

with

$$
\begin{equation*}
P_{i: k}^{(3 / 2)}+P_{t: k}^{(1 / 2)}=I_{i: k}=g_{i k} . \tag{3.10}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
& \phi_{i}=P_{i k} \psi_{k}=-\left(g_{i k}-\frac{1}{3} \gamma_{i} \gamma_{k}\right) \psi_{k}  \tag{3.11}\\
& \phi_{0}=\gamma_{k} \psi_{k}  \tag{3.12}\\
& \lambda=\psi_{0} . \tag{3.13}
\end{align*}
$$

The Lagrange density (3.1) can be written in terms of (3.11)-(3.13):

$$
\begin{align*}
\mathscr{L} & =\bar{\psi}_{\mu}\left\{-[\mathrm{i}(\gamma \cdot D)-m] g^{\mu \rho}+\mathrm{i}\left(\gamma^{\mu} D^{\mu}+D^{\mu} \gamma^{\mu}\right)-\gamma^{\mu}[\mathrm{i}(\gamma \cdot D)+m] \gamma^{\mu}\right\} \psi_{\mu} \\
& \equiv \mathrm{i} m_{\mu} \phi_{\mu}^{+} P_{\mu \nu} \dot{\phi}_{\nu}-\phi_{\mu}^{+} a_{\mu \nu} \phi_{\nu}-\lambda^{+} c_{\nu} \phi_{\nu}-\phi_{\mu}^{+} c_{\mu}^{+} \lambda . \tag{3.14}
\end{align*}
$$

$\star$ The following representation has been used for the $\gamma$ matrix:

$$
\begin{aligned}
& \gamma^{\prime \prime}=\gamma_{0}=\left[\begin{array}{rr}
0 & 0 \\
0 & -i
\end{array}\right] \\
& \gamma^{5}=\mathrm{i} \gamma^{i} \gamma^{\prime} \gamma^{2} \gamma^{3}=\gamma_{5}=\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right] \\
& \gamma^{\prime}=\left[\begin{array}{cc}
0 & \sigma^{\prime} \\
-\sigma^{\prime} & 0
\end{array}\right]
\end{aligned}
$$

with

$$
\begin{aligned}
& \sigma^{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma^{2}=\left[\begin{array}{rr}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right] \quad \sigma^{3}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \\
& 2 \sigma_{\mu \nu}=\mathrm{i}\left[\gamma_{\mu}, \gamma_{\nu}\right]=\mathrm{i}\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right) \\
& 2 g_{\mu \nu}=\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=\gamma_{\mu} \gamma_{\nu}+\gamma_{\mu} \gamma_{\mu} .
\end{aligned}
$$

The following notation has been used:

$$
\begin{align*}
& \phi_{\mu}=\left(\phi_{0}, \phi_{k}\right)  \tag{3.15}\\
& m_{\mu}=\left(m_{0}, m_{k}\right) \equiv\left(-\frac{2}{3}, 1\right)  \tag{3.16}\\
& P_{\mu \nu}=\left(P_{00}, P_{k 0}, P_{01}, P_{k i}\right) \equiv\left(1,0,0,-g_{k i}+\frac{1}{3} \gamma_{k} \gamma_{l}\right)  \tag{3.17}\\
& a_{\mu \nu}=\left(a_{00}, a_{k 0}, a_{01}, a_{k \prime}\right) \\
& \equiv\left\{\frac{2}{3}\left[\gamma_{0}\left(-\frac{1}{3} \mathrm{i} \gamma_{D}+m\right)+e A_{0}\right], \frac{1}{3} \mathrm{i} P_{k j} D_{f} \gamma_{0},-\frac{1}{3} \mathrm{i} \gamma_{0} D, P_{l}, P_{k j}\left[\gamma_{0}\left(\mathrm{i} \gamma_{D}+m\right)-e A_{0}\right] P_{\mu l}\right\}  \tag{3.18}\\
& c_{\mu}=\left(c_{0}, c_{k}\right) \equiv\left[\left(-\frac{2}{3} \mathrm{i} \gamma_{D}+m\right), \mathrm{i} D_{j} P_{j k}\right]  \tag{3.19}\\
& c_{\mu}^{*}=\left(c_{0}^{+}, c_{k}^{+}\right) \equiv\left[\left(\frac{2}{3} \mathrm{i} \gamma_{D}+m\right), \mathrm{i} P_{k j} D_{i}\right] \tag{3.20}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{D} \equiv \gamma^{\prime} D^{\prime} \tag{3.21}
\end{equation*}
$$

To exhibit the canonical structure of this theory more explicitly we have rewritten the Lagrange density (3.1) in a non-covariant form by splitting the space and time dependence as well as the space and time components. Although the expressions obtained in obtaining the form (3.14) look rather complicated, they exhibit clearly the spin contents of the field as well as their canonical structure.

The operator $\left(d c^{\dagger}\right)$ in (2.8) plays a crucial role for both the propagation and quantisation, as was observed in the previous section. The relationships developed in $\S 2$ can be used in this section by replacing $\delta_{\mu \nu}$ in (2.4) and (2.28) by $P_{\mu \nu}$ :

$$
\begin{equation*}
\delta_{\mu \nu} \rightarrow P_{\mu \nu} \tag{3.22}
\end{equation*}
$$

where $P_{\mu \nu}$ is defined by (3.17). We now have the operator ( $d c^{*}$ ) in terms of (3.16)-(3.20):

$$
\begin{equation*}
\left(d c^{+}\right)=-\frac{3}{2}\left(m^{2}-\frac{2}{3} e \boldsymbol{\sigma} \cdot \boldsymbol{H}\right) . \tag{3.23}
\end{equation*}
$$

Note that we have used the relationship

$$
\begin{equation*}
\gamma_{D}^{2}+\boldsymbol{D}^{2}=-\frac{1}{2} e \sigma_{i j} F_{i j}=-e \boldsymbol{\sigma} \cdot \boldsymbol{H} \tag{3.24}
\end{equation*}
$$

The invertibility condition is not satisfied in (3.23), since the matrix ( $d c$ ) becomes singular on a world sheet, namely

$$
\begin{equation*}
\operatorname{det}\left(d c^{*}\right)=\left(\frac{3}{2} m^{2}\right)^{4}\left[1-\left(\frac{2}{3} e / m^{2}\right)^{2} \boldsymbol{H}^{2}\right]^{2} \tag{3.25}
\end{equation*}
$$

This creates all the difficulties so far discussed.
Let $L_{\mu \nu}$ be the resulting coefficient matrix in the principal part of the true equation of motion (A10) in the appendix. This is given by (A15). We find the following relationship in the specific frame $n_{\mu}=\left(n_{0}, 0,0,0\right)$ :

$$
\begin{equation*}
\mathrm{i} \gamma_{0}{ }_{3}^{2}\left(1 / m^{2}\right) n_{0}\left(d c^{" \prime}\right)=L_{001}\left(n_{0}\right) \quad L_{10}\left(n_{0}\right)=0 \tag{3.26}
\end{equation*}
$$

Thus we have shown that the operator $\left(d c^{\dagger}\right)$ is responsible for the non-causal modes of propagation.

Quantisation of the Rarita-Schwinger field is easily carried out by the substitution of (3.22) in (2.29). The result is

$$
\begin{equation*}
\left\{\phi_{\mu}(x), \phi_{i},(y)\right\}=\delta^{(3)}(x-y) m_{\mu}^{-1} M_{\mu \nu} \tag{3.27}
\end{equation*}
$$

This is nothing but the Johnson-Sudarshan anticommutator. Here we have again assumed the invertibility condition

$$
\begin{equation*}
\operatorname{det}\left(d c^{+}\right) \neq 0 . \tag{3.28}
\end{equation*}
$$

Thus we conclude that both the non-positive definiteness of the anticommutators and non-causal modes of propagation arise from the same origin, namely the invertibility condition (3.28), inherent in the constrained dynamical systems.

## 4. Conclusions

Guided by the mechanical model with the linear supplementary condition we have arrived at the conclusion that the Rarita-Schwinger paradoxes, the non-positive definiteness of the anticommutators and the non-causal modes of propagation have the same origin. This is that the lack of invertibility of the operator $\left(d c^{*}\right)$ is responsible for the difficulties so far discussed.

The same situation has been observed in the constraint mechanical model $[9,10]$ describing the system with $2(N+1)$ degrees of freedom. We have also discussed the Gribov ambiguity in the non-Abelian gauge field from the invertibility point of view [11].

## Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada. One of us (MK) wishes to thank K Seo and M Kawasaki for checking the $12 \times 12$ determinant of (A20) in the special cases.

## Appendix. The characteristic determinant

The Euler-Lagrange equation of motion follows from equation (3.1) that

$$
\begin{equation*}
\Lambda_{\mu: \rho}(D) \psi^{\rho}=0 . \tag{A1}
\end{equation*}
$$

The primary constraint arises from the 0 component of (A1):

$$
\begin{equation*}
\Lambda_{0: \rho}(D) \psi^{\rho}=\gamma_{0}\left[\mathrm{i} D_{k}+\left(\mathrm{i} \gamma_{D}-m\right) \gamma_{k}\right] \psi_{k}=0 . \tag{A2}
\end{equation*}
$$

This implies that $\psi_{0}$ plays the role of Lagrange multipliers. The secondary constraints are obtained by contracting (A1) with $\gamma^{\mu}$ and $D^{\mu}$ :

$$
\begin{align*}
& \left\{\mathrm{i} D_{\rho}-\left[\mathrm{i}(\gamma \cdot D)+\frac{3}{2} m\right] \gamma_{\rho}\right\} \psi^{\rho}=0  \tag{A3}\\
& {\left[\mathrm{i} D_{\rho}-\mathrm{i}(\gamma \cdot D) \gamma_{\rho}-\mathrm{i} e(1 / m) F_{\rho \alpha} \gamma^{\alpha}-\frac{1}{2} e(1 / m) \sigma_{\alpha \beta} F^{\alpha \beta} \gamma_{\rho}\right] \psi^{\rho}=0 .} \tag{A4}
\end{align*}
$$

Solving (A3) and (A4), we obtain

$$
\begin{equation*}
\left(. \| \gamma_{\nu,}-i e_{\kappa} F_{p \alpha} \gamma^{\kappa}\right) \psi^{\rho}=0 \tag{A5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{l} \equiv 1-e \kappa_{\frac{1}{2}}^{2} \sigma_{\alpha \beta} F^{\alpha \beta} \tag{A6}
\end{equation*}
$$

with

$$
\begin{equation*}
\kappa=2 / 3 m^{2} . \tag{A7}
\end{equation*}
$$

Solving for $\mathscr{M} D_{\rho} \psi^{\rho}$ by substituting (A5) back into (A3) we obtain

$$
\begin{equation*}
\left\{\mathscr{M} \mathrm{i} D_{\rho}-\left[\mathrm{i}(\gamma \cdot D)+\frac{3}{2} m\right] \mathrm{i} e_{\kappa} F_{\rho \alpha} \gamma^{\alpha}-R \gamma_{\rho}\right\} \psi^{\rho}=0 \tag{A8}
\end{equation*}
$$

where $R$ is given by

$$
\begin{equation*}
R \equiv[\mathcal{M}, \mathrm{i}(\gamma \cdot D)]=-e \kappa\left(D^{\alpha} F_{\alpha \beta}+F_{\alpha \beta} D^{\alpha}\right) \gamma^{\beta} . \tag{A9}
\end{equation*}
$$

To obtain the true equation of motion, we contract (A1) with $\mathcal{M}$ and substitute (A5) and (A8) into it:

$$
\begin{align*}
\mathscr{M} \Lambda_{\mu: \rho}(D) \psi^{\rho} & =\left\{-[\mathrm{i}(\gamma \cdot D)-m] \mathscr{M} g_{\mu \rho}-R g_{\mu \rho}+R_{\mu}^{(1)} \mathrm{i} D_{\rho}+R_{\mu}^{(2)} \gamma_{\rho}\right. \\
& \left.-R_{\mu}^{(1)}[\mathrm{i}(\gamma \cdot D)+m] \gamma_{\rho}+\left(\mathrm{i} D_{\mu}+\frac{1}{2} m \gamma_{\mu}\right) \mathrm{i} e \kappa F_{\rho \alpha} \gamma^{\alpha}\right\} \psi^{\rho}=0 . \tag{A10}
\end{align*}
$$

This is the true equation of motion. Here we have defined the operators $R_{\mu}^{(1)}(i=1,2)$ as

$$
\begin{align*}
R_{\mu}^{(1)} & \equiv\left[\mathcal{M}, \gamma_{\mu}\right]=2 \mathrm{i} e \kappa F_{\mu \alpha} \gamma^{\alpha}  \tag{A11}\\
R_{\mu}^{(2)} & \equiv\left[\mathcal{M}, \mathrm{i} D_{\mu}\right] \\
& =-e \kappa\left\{\left(D^{\alpha} F_{\alpha \mu}+F_{\alpha \mu} D^{\alpha}\right)-\left[(\gamma \cdot D) F_{\alpha \mu} \gamma^{\alpha}+\gamma^{\alpha} F_{\alpha \mu}(\gamma \cdot D)\right]\right\} . \tag{A12}
\end{align*}
$$

To find the normals $n_{\mu}$ to the characteristic surfaces we replace

$$
\begin{equation*}
\partial_{\mu} \rightarrow n_{\mu} \tag{A13}
\end{equation*}
$$

in the principal part and calculate the determinant $\mathscr{G}(n)$ of the resulting coefficient matrix $L_{\mu \nu}(n)$. Thus the true equation of motion (A10) yields

$$
\begin{equation*}
\mathscr{G}(n)=\operatorname{det} L_{\mu \nu}(n) \tag{A14}
\end{equation*}
$$

where

$$
\begin{align*}
L_{\mu \nu}(n)=-\mathrm{i}( & \gamma \cdot n) \cdot \mu g_{\mu \nu}+e \kappa\left(n^{\alpha} F_{\alpha \beta}+F_{\alpha \beta} n^{\alpha}\right) \gamma^{\beta} g_{\mu \nu} \\
& -2 e \kappa F_{\mu \alpha} \gamma^{\alpha} n_{\nu}+2 e_{\kappa} F_{\mu 火} \gamma^{\alpha}(\gamma \cdot n) \gamma_{\nu}-n_{\mu} e \kappa F_{\nu \alpha} \gamma^{\alpha} \\
& -e \kappa\left\{\left(n^{\alpha} F_{\alpha \mu}+F_{\alpha \mu} n^{\alpha}\right)-\left[(\gamma \cdot n) F_{\alpha \mu} \gamma^{\alpha}+\gamma^{\alpha} F_{\alpha \mu}(\gamma \cdot n)\right]\right\} \gamma_{\nu} . \tag{A15}
\end{align*}
$$

To avoid excessively cumbersome computations we take the special frame in which

$$
\begin{equation*}
n_{\mu}=\left(n_{0}, 0,0,0\right) \tag{A16}
\end{equation*}
$$

This frame plays a crucial role for the true equations of motion in non-covariant form.
Since we have

$$
\begin{align*}
& L_{00}\left(n_{0}\right)=\mathrm{i} \gamma_{0} \kappa n_{0}\left(d c^{*}\right)  \tag{A17}\\
& L_{10}\left(n_{0}\right)=0 \tag{A18}
\end{align*}
$$

the characteristic determinant in the frame (A16) becomes

$$
\begin{equation*}
\mathscr{G}\left(n_{0}\right)=\operatorname{det} L_{00}\left(n_{0}\right) \operatorname{det} L_{i j}\left(n_{0}\right) \tag{A19}
\end{equation*}
$$

where $L_{i j}\left(n_{0}\right)$ is a $12 \times 12$ matrix and is given by
$L_{i j}\left(n_{0}\right)=-\mathrm{i} n_{0}\left\{e \kappa\left(-\boldsymbol{\sigma} \cdot \boldsymbol{E} g_{i j}-2 E^{\prime} \sigma^{\prime}\right) \otimes \rho^{2}+\left[(1-e \kappa \boldsymbol{\sigma} \cdot \boldsymbol{H}) g_{i j}-2 \mathrm{i} e \kappa F_{i k} \sigma^{k} \sigma^{\prime}\right] \otimes \rho^{3}\right\}$.

Here the fields $\boldsymbol{H}, \boldsymbol{E}$ have been defined by

$$
\begin{array}{ll}
H^{\prime}=\frac{1}{2} \varepsilon_{i, k} F_{j k} & (i=1,2,3) \\
E^{\prime}=F_{0 i} & (i=1,2,3) \tag{A22}
\end{array}
$$

with the convention $\varepsilon_{123}=1$, and $\sigma$ is defined by

$$
\begin{equation*}
\sigma^{\prime}=\frac{1}{2} \varepsilon_{i j k} \sigma_{j k}=\sigma^{j} \otimes \mathbb{\mathbb { O }} \quad(i=1,2,3) \tag{A23}
\end{equation*}
$$

Thus the characteristic determinant in covariant form turns out to be

$$
\begin{gather*}
\mathscr{G}(n)=\left[n^{2}+e^{2} \kappa^{2}\left(n \cdot F^{d}\right)^{2}\right]^{2}\left\{n^{2}+e^{2} \kappa^{2}\left[\left(n \cdot F^{d}\right)^{2}-(n \cdot F)^{2}\right]\right\}^{4} \\
\times\left\{n^{2}+e^{2} \kappa^{2}\left[9\left(n \cdot F^{d}\right)^{2}-(n \cdot F)^{2}\right]\right\}^{2} . \tag{A24}
\end{gather*}
$$

Here $F_{\mu \nu}^{\mathrm{d}}$ is the dual field of $F_{\mu \nu}$ and is defined by

$$
\begin{equation*}
F_{\mu \nu}^{\mathrm{d}}=\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} F^{\rho \tau} . \tag{A25}
\end{equation*}
$$

Notice that the invertibility condition for (A5) is

$$
\begin{equation*}
\operatorname{det} \mathscr{M}=\left[1+e^{2} \kappa^{2}\left(\boldsymbol{E}^{2}-\boldsymbol{H}^{2}\right)\right]^{2} \neq 0 \tag{A26}
\end{equation*}
$$

## References

[1] Johnson K and Sudarshan E C G 1961 Ann. Phys., NY 13126
[2] Velo G and Zwanziger D 1969 Phys. Rev. 186 1337; 1969 Phys. Rev. 1882218
[3] Hagen C R 1971 Phys. Rev. D 42204
Seetharaman M, Prabhakaran J and Mathews P M 1975 Phys. Rev. D 12458
[4] Shamaly A and Capri A Z 1972 Ann. Phys., NY 74503
Fisk C and Tait W 1973 J. Phys. A: Math., Nucl. Gen. 6383
Jenkins J D 1974 J. Phys. A; Math., Nucl. Gen. 71129
Labonté G 1980 Nuovo Cimento A 59263
[5] Schwinger J 1963 Phys. Rev. 130800
Gupta S N and Repko W W 1969 Phys. Rev. 1771921
Soo W F 1973 Phys. Rev. D 8667
Gluch G, Hays P and Kimmel J D 1974 Phys. Rev: D 91674
Nagpal A N 1978 Phys. Rev. D 184641
Inoue K, Omote M and Kobayashi M 1980 Prog. Theor. Phys. 631413
[6] Aurilia A, Kobayashi M and Takahashi Y 1980 Phys. Rev. D 221368 Kobayashi M and Takahashi Y 1986 Prog. Theor. Phys. 75993
[7] Takahashi Y 1962 Phys. Lett. 1 278; 1965 Physica 31205
[8] Dirac P A M 1950 Can. J. Math. 2129
[9] Capri A Z and Kobayashi M 1982 J. Math. Phis. 23736
[10] Capri A Z and Kobayashi M 1987 J. Phys. A: Math. Gen. 206101
[11] Takahashi Y and Kobayashi M 1978 Phys. Lett. 78B 241


[^0]:    $\dagger$ The variable $\phi_{\mu}$ could be multicomponent and $c_{\mu}$ is in general matrix. However, we suppress extra indices for simplicity. The matrix multiplication rule should therefore be used in the algebra of $c_{\mu}$ and its associated quantities. It should also be noted that the quantities with Greek indices do not necessarily imply tensors. See examples in $\$ 3$, equations (3.19), (3.20) and (3.23).

