
The Rarita-Schwinger paradoxes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 6581

(http://iopscience.iop.org/0305-4470/20/18/053)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math.  Gen .  20 (1987)  6581-6589. Printed in  the U K  

The Rarita-Schwinger paradoxes 

M Kobayashit and Y Takahashi$ 
+ Physics Department,  Gifu University, Yanagido, Gifu 501-1 1, Japan 
: Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, 
Alberta T6G 2J1.  Canada  

Received 16 December 1986, in final form 30 June 1987 

Abstract. 'The Rarita-Schwinger field coupled to an  external electromagnetic field is reduced 
to a constrained mechanical model.  I t  is shown that, guided by the mechanical model 
with the linear supplementary condition, both the non-positive definiteness of the anticom- 
mutators and  the non-causal modes of propagation ( the Rarita-Schwinger paradoxes) have 
the same origin. 

1. Introduction 

High-spin field theories are beset with difficulties of various kinds. In 1961 Johnson 
and Sudarshan [ 13 first observed the non-positive definiteness of the anticommutators 
for the Rarita-Schwinger field coupled to an  external electromagnetic field. This 
anomaly was re-emphasised by Velo and Zwanziger [ 2 ]  in 1969 who discovered 
non-causal modes of propagation in the classical theory. Many analyses have been 
made of these problems [3-51. We now have recognised that these diseases are viewed 
as rather general phenomena inherent in constrained systems and commonly originate 
from the invertibility condition [6]. 

The Rarita-Schwinger field coupled to an  external electromagnetic field is reduced 
to a mechanical model with the supplementary condition. By using the constrained 
mechanical model we trace the origin of the Rarita-Schwinger paradoxes, namely the 
non-positive definiteness of the anticommutators and the non-causal modes of propaga- 
tion. The aim of this paper is to show that the Rarita-Schwinger paradoxes have a 
common origin inherent in the constrained dynamical system. 

In § 2 we present the mechanical model with the supplementary condition and 
analyse the situation corresponding to the occurrence of secondary constraints. In § 3 
we show that the Rarita-Schwinger field coupled to an  external electromagnetic field 
is reduced to the constrained mechanical model of B 2 and that the inconsistencies 
(the Rarita-Schwinger paradoxes) come from the same source, as is expected. One 
of the spin-', components plays the role of a Lagrange multiplier. This corresponds to 
having a primary constraint arising from the Lagrangian. The final section is devoted 
to the conclusion. I n  the appendix the characteristic determinant is obtained from the 
viewpoint of keeping the manifest covariance in mind. 

2. The mechanical model 

Consider a system with N +  1 degrees of freedom described by the Lagrangian 

L = i 4 , L m p t ~ z  - 4 l a , ,  4,  - A  c, 4' -4,c,A - V(4:, 4, ). (2.1) 
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We assume summation over repeated indices. Here 4,, dL, (p, v = 0, 1 ,2 , .  . . , N )  are 
the coordinates and the potential term V contains quadratic as well as higher-order 
terms in the coordinatest. By introducing the Lagrange multipliers A , A ,  we have 
imposed the linear supplementary condition 

c,4, = o  c4;c; = O )  (2.2) 

where the coefficients cp d o  not contain the coordinates. 
The ‘kinetic mass matrix’ m,, and the matrix a,,, are both Hermitian. 
Since the matrix m is Hermitian, it can always be diagonalised by a unitary 

transformation. We assume that this has been done and that 

with no summation over the repeated index of the eigenvalue m, from now on. This 
eigenvalue is called the kinetic mass [7]. 

The kinetic masses are assumed to be non-vanishing but not necessarily all positive. 
This ‘wrong’ sign in the kinetic part may create the inconsistencies. 

The potential term plays no role in the constraint structure and is therefore dropped 
from now on. Dropping the potential term V, the Lagrangian can be written 

We now assume that the mass matrix is non-singular in order to analyse in detail 
the problem inherent in the constrained system. The problem is to show that both the 
non-positive definiteness of the anticommutators and the non-causal modes of propaga- 
tion commonly originate from the lack of invertibility of the operator (dc’)  defined 
by equation (2.8) below. 

The Euler-Lagrange equations corresponding to the Lagrangian (2.4) are 

and 

c,,4, = 0 

where equation (2.6) implies the supplementary condition. 
Taking the time derivative of equation (2.6), we obtain 

( d c  ) A  + (ic,6,v + d,a,u)4L = 0. 

Here we have substituted (2.5) into (2.7) and we have defined (dc  ) as 

( d c  ) = d,c, 

where 

d,  = mi‘c , .  

Assuming the invertibility condition, which is 

(2.6) 

( d c  ) # 0  (2.10) 

7 The Lariable d,, could be multicomponent and c,, is in general matrix. HoweLer, we suppress extra indices 
for simplicity. The matrix multiplication rule should therefore be used in the algebra of c,, and  its associated 
quantities. I t  should also be noted that the quantities with Greek indices d o  not necessarily imply tensors. 
See examples in % 3,  equations (3.191, (3.201 and (3 .23 ) .  
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we obtain from (2.5) and  (2.7) the true equations of motion: 

im, 4, + ic;( dc ) -'CL 4, - M r v a r h  4,, = 0. 

Here we have introduced the operator M W L  defined by 

M , ,  = S , . - c ; ( d c - ) - ' d , .  

This operator satisfies the following relationships: 

M p A M A ~  = M p !  

d ,M,,  = A4,,ci = 0. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Another true equation of motion comes from (2.7) by again taking the time derivative 
and  the result turns out to be 

( d c  )A +[2(8c- )+  (dc- )  - i ( d a d j ] h  +[(izM8,,, + d,+a,, + d,arz,)8,,A 

-i(iC,S,,+ d , a , , ) ( l / m , , ) a v A 1 d A  = O  (2.15) 

where 

( d a d ' )  = d,a,,d,. (2.16) 

Thus we have obtained the true equations of motion for the coordinates 4, and 
Here we have substituted (2.5) into (2.15) in the course of the derivation. 

the Lagrange multiplier A [see equations (2.11) and  (2.15)). 

2.1. Propagation 

The principal parts of the true equations of motion (2.11) and (2.15) become 

im,8,v&u +. . . = o 
(dc ' ) ) ;  i.. , = 0. 

(2.17) 

(2.18) 

To find the normals n, to the characteristic surfaces we replace 

a, + n, (2.19) 

in the principal parts of the true equations of motion in covariant form. In the specific 
frame 

(2.20) 

the principal parts of the true equations of motion agree, up  to a factor, with equations 
(2.17) and (2.18) after replacemenf of 8, by n , .  Thus, the characteristic determinant 
in this frame turns out to be 

n, = ( n o ,  0, 0,O) 

2.2 Quantisation 

I f  we assume that 

CO + 0 

4" = - C O  I C A  &A 

equation (2.6) yields 

( 4 " = - 4 , c , c , , - 1 )  

(2.21) 

(2.22) 

(2.23) 
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where Latin indices from the middle of the alphabet, namely i , j ,  k, . . .. run from 1 to 
N. Furthermore, we have 

& o = - c ~ ‘ c ~ & ~  - c i ‘ c , d , .  (2.24) 

To obtain the kinetic energy part of the Lagrangian (2.4) we substitute (2.23) and 
(2.24) back into it. The result turns out to be 

L=i4iA, ,dJ+.  . . (2.25) 

with 

A, =[8,,+cT(d,c,)-’d,]m,. (2.26) 

The quantity A,/ is called the ‘effective mass’ [ 7 ] .  

7; = aL/adJ = idiAl,,. 

Let 7; be the canonical momenta conjugate to the coordinates d,: 

(2.27) 

Assuming the usual equal time anticommutators 

I ~ , ( x ) ,  ~ L ( Y ) }  = isjk8’”(x - Y )  (2.28) 

(2.29) 

Here use has been made of the relationship 

&!J ( I /  m~ = M t ] A J k  ( l /  mk ) = 8 t k  (2.30) 

as well as (2.23). 
We have applied the Hamiltonian formalism proposed by one of the authors [ 7 ] .  

The results we obtained for the system are equivalent to those of Dirac, who studied 
constrained Hamiltonian systems in general [ 8 ] .  We underline the simplicity, generality 
and transparency of the above derivation. 

The invertibility condition (2.10), namely 

( d c “ ) # O  (2.31) 

is responsible for both the propagation and quantisation of the coordinates dp. Thus, 
we have arrived at the conclusion that the anomalies have a common origin inherent 
in the constrained systems. 

3. The Rarita-Schwinger field 

The Lagrange density for the Rarita-Schwinger field coupled to an external electromag- 
netic field can be cast into the form (2.4). 

Let us start with the Lagrange density 

9 = $,, .Ip ” (  D)$ ,  = ~ ~ ~ “ ~ $ ~ y ~ y , ~ D ~ $ ~  +im$papp$,, (3.1) 

where 

A” ” ( D )  = - [ i (y .  D )  - m ] g p p  + i (  y p D ” +  W y ” )  - y’[i(y. D ) +  m ] y ” .  (3.2) 
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Here $, is the vector-spinor field describing spin-: particles with mass m and 4, is 
the Dirac conjugate to $,, G w = $ > y O f ’ .  Our metric is g,,,=diag(l, -1, -1, -1). We 
have used the convention E~~~~ = 1. 

To introduce coupling to an external electromagnetic field, we have made the 
replacement 

a,+D,=a,-ieA,. (3.3) 

[D,, D,] = -ieF,, = -ie(d,A, -a,A,). (3.4) 

(3.5) 4, -p‘3 2 )  

4 0 -  = -y,p;’iz)  (Lk (3.6) 

A = +bo (3.7) 

where P:ai ( a  = ;, i) is the spin projection operator that projects out the spin-a part 
from the vector-spinor field and is given by 

for a = +  (3.8) 

This choice yields 

Next we split the Rarita-Schwinger field $, into irreducible spin parts according to 

t k $k 

p y  -p ,k = g -1 

p(”*) r k  = iY,& for a =; (3.9) 

P ( 7 / 2 1 + P j I k 2 1  = 

xk 3?1Yk 

with 

(3.10) , k  I ,  A = g,k. 

Thus we have 

4, = Ptk$A  = - ( g ! l . - ~ ~ ~ ? k ) $ A  (3.11) 

40 = YL * k  (3.12) 

A = $ 0 .  (3.13) 

The Lagrange density (3.1) can be written in terms of (3.11)-(3.13): 

3 = 6 , { - [ i ( y .  D ) - m ] g , ’ P + i ( y L I D i J + D , y ~ ) -  y”[i(y.  D)+m]y”}$, 
- (3.14) 
= img4pP ,p4p  - &ia,v4v - A-c,&, - &,c,A. 

+ The following representation has been used for the y matrix: 

with 
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The following notation has been used: 

4, = ( 4 0 9  dh) (3.15) 

m , = ( m o , m h ) = ( - ; , l )  (3.16) 

Pp t i  = ( PO0 5 S O ,  PO/ 9 PA/ ZE ( 1 9 0,  0 ,  -gA/ + 4 Y b  Y/) (3.17) 

a,, = (aoo, aka, a ~ ,  

= { $ y o (  - iirD + 111) + ~ ~ P A , D , Y o ,  -$y&,P,/, Pk,[ Y O ( ~ Y D  + m - ~AoIP, ,}  (3.18) 

c, = ( c O ,  c~) . . [ ( -~ iyD+m), iD,P , , ]  (3.19) 

c;=(cG, ~ i ) ~ [ ( 5 i r ~ + m ) , i P ~ ~ D , ]  (3.20) 

where 

yo = YID'. (3.21) 

To exhibit the canonical structure of this theory more explicitly we have rewritten 
the Lagrange density (3.1) in a non-covariant form by splitting the space and time 
dependence as well as the space and time components. Although the expressions 
obtained in obtaining the form (3.14) look rather complicated, they exhibit clearly the 
spin contents of the field as well as their canonical structure. 

The operator (dc ' )  in (2.8) plays a crucial role for both the propagation and 
quantisation, as was observed in the previous section. The relationships developed in 
§ 2 can be used in this section by replacing S,,, in (2.4) and (2.28) by P,,,: 

6," + P," (3.22) 

where PFy is defined by (3.17). We now have the operator (dc') in terms of (3.16)-(3.20): 

(3.23) (dc') = -+( mz - 2  3 e u .  H i .  

Note that we have used the relationship 

y& + D2 = -I >ea,,F,, = - e o  H. (3.24) 

The invertibility condition is not satisfied in (3.231, since the matrix (dc':) becomes 
singular on a world sheet, namely 

det(dc7) = (Im')'[l - (;e/m')'H']' .  (3.25) 

This creates all the difficulties so far discussed. 
Let L,, be the resulting coefficient matrix in the principal part of the true equation 

of motion (A10) in the appendix. This is given by (A1.5). We find the following 
relationship in the specific frame n, = ( n o ,  0 ,  0,O): 

ir& 1/ m')  no( dc.' 1 = L , d  ncl)  & i d  4 1 )  = 0. (3.26) 

Thus we have shown that the operator (dc') is responsible for the non-causal modes 
of propagation. 

Quantisation of the Rarita-Schwinger field is easily carried out by the substitution 
of (3.22) in (2.29). The result is 

{bp ( x ) ,  4 z , ( ~ ) }  = cS3'(.x -.v)m;'MgL,. (3.27) 
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This is nothing but the Johnson-Sudarshan anticommutator. Here we have again 
assumed the invertibility condition 

det( dc') # 0. (3.28) 

Thus we conclude that both the non-positive definiteness of the anticommutators 
and non-causal modes of propagation arise from the same origin, namely the inverti- 
bility condition (3.28), inherent in the constrained dynamical systems. 

4. Conclusions 

Guided by the mechanical model with the linear supplementary condition we have 
arrived at the conclusion that the Rarita-Schwinger paradoxes, the non-positive 
definiteness of the anticommutators and the non-causal modes of propagation have 
the same origin. This is that the lack of invertibility of the operator (dc ' )  is responsible 
for the difficulties so far discussed. 

The same situation has been observed in the constraint mechanical model [9,10] 
describing the system with 2 (  N + 1)  degrees of freedom. We have also discussed the 
Gribov ambiguity in the non-Abelian gauge field from the invertibility point of view [ 113. 
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Appendix. The characteristic determinant 

The Euler-Lagrange equation of motion follows from equation (3.1) that 

.I, , ( D ) V  = 0. (AI )  

-b,(D)ID" = ~ ~ [ i D , : + ( i y , - m ) y ~ l c L ~  = O .  (A2) 

The primary constraint arises from the 0 component of ( A l ) :  

This implies that 9,) plays the role of Lagrange multipliers. The secondary constraints 
are obtained by contracting ( A l )  with y p  and D p :  

{ iD, - [ i (y*  D)+:m]y,}9" = O  (A31 

(A4) 

( d y , ,  - i e ~ F , , , y ~ ) $ ~  = O  (A51 

[ i D, - i (  y . D )  yp - ie(  1 / m ) F , ,  y" - !e( 1 / m ) c ~ , ~ F " ~ y , ]  $ p  = 0. 

Solving (A3) and (A4),  we obtain 

where 

.Z1 E 1 - eK$g,,/JF"U (A61 
with 

K = 2/3m'. ('47) 
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Solving for ,$liD,4p by substituting (AS) back into (A3) we obtain 

{AiD, - [i( y * D )  t :m]ie~F,,y" - RY,}+~  = 0 

R = [A, i( y .  D)] = -eK(D"FQp + FQpD")yp. 

('48) 

where R is given by 

('49) 

To obtain the true equation of motion, we contract ( A l )  with A and substitute 
(A5) and (A8) into it: 

A.\, , (D)GP = {-[i(y.  D )  - m]Ag,, - Rg,,, + R;'iD, +RF 'y ,  

-R:)[i(y. D ) + m ] y , + ( i D , + ~ m y , ) i e ~ F , , y " } + ~  =o.  (A101 

This is the true equation of motion. Here we have defined the operators RL' ( i  = 1 ,2 )  
as 

R:)= [&, y,] = 2ie~F,,y" ( A l l )  

R:"= [A, iD,] 

= -eK{(DnF,,+ F,,D")-[(y- D)F,,y"+ yaF,,(y* D)]}. (A12) 

To find the normals n, to the characteristic surfaces we replace 

a, + n, (A131 

in the principal part and calculate the determinant %(n) of the resulting coefficient 
matrix L, , (n ) .  Thus the true equation of motion (A10) yields 

9( n )  = det LPy( n )  (A141 

where 

L,,(n)= - i ( y *  n)./Mg,,+eK(n"F,p+ F,,n")yPg,, 

- 2e~F,,y"n,, + 2e~F,, ,y"( y .  n )  y y  - n,eKF,,ya 

-e~{(n"F, ,+F, ,n") - [ (y .  n ) f , ,~"+y"F, , (y  n) l )yV.  (A151 

To avoid excessively cumbersome computations we take the special frame in which 

(A16) 

This frame plays a crucial role for the true equations of motion in non-covariant form. 

n, = ( n o ,  o,o,  0).  

Since we have 

Loo(no) = iYoKno(dcS) (A17) 

L o (  no) = 0 (A181 

the characteristic determinant in the frame (A16) becomes 

% ( n o )  = det Loo( no)  det L,,( no)  

where L,,(no) is a 1 2 x  12 matrix and is given by 
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Here the fields H, E have been defined by 

H’ = f&,,kF,k ( i = 1 , 2 , 3 )  

E ’  = Fo, ( i = 1 , 2 , 3 )  

with the convention = 1, and (+ is defined by 

( i  = 1,2,3) .  , I  U =-  2 €Ilk U,!, = U’ @ 1 

Thus the characteristic determinant in covariant form turns out to be 

9 ( n ) = [ n ’ + e ’ K 2 ( n .  F d ) 2 ] ’ { n r + e 2 ~ 2 [ ( n .  F d ) ’ - ( n .  F ) ’ ] } 4  

~ { n ’ + e ~ ~ ~ [ 9 ( n .  F d ) ’ - ( n .  F)’ ] } ’ .  

Here FZu is the dual field of FFy and is defined by 
Fd =I P” 

p” 2€p”prrF . 

Notice that the invertibility condition for (A5) is 

det A = [ 1 + e2K2((E2 - H’)]’ # 0. 
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